The Evaluation of Triphenyl Phosphate as a Flame Retardant Additive to Improve the Safety of Lithium-Ion Battery Electrolytes ``` M. C. Smart*, F. C. Krause †, C. Hwang*, W. C. West*, J. Soler*, G. K. S. Prakash †, and B. V. Ratnakumar*, ``` * Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Drive, Pasadena, CA 91109-8099 University of Southern California, Loker Hydrocarbon Research Institute 837 Bloom Walk, Los Angeles, CA 91003 219th Meeting of the Electrochemical Society (ECS) Montreal, Canada May 4, 2011 Copyright 2011. All rights reserved. ### Outline - > Introduction - Objective and Approach - Background - Experimental - Approach and Methodology - MCMB-LiNiCoO₂ Experimental 3-Electrode Cell Results - Graphite-LiNiCoAlO₂ Experimental 3-Electrode Cell Results - ➤ Li metal-Li(Li_{0.17}Ni_{0.25}Mn_{0.58})O₂ Experimental Coin Cell Results - Graphite-Toda LiNiCoMnO₂ Experimental Coin Cell Results - Graphite-Toda LiNiCoMnO₂ Experimental 3-Electrode Cell Results - Prototype Cell Results - MCMB-LiNiCoO₂ 7 Ah Cells Manufactured by Yardney Technical Products - **≻**Conclusions ### Introduction - NASA is actively pursuing the development of advanced electrochemical energy storage and conversion devices for future lunar and Mars missions. - The Exploration Technology Development Program, Energy Storage Project is sponsoring the development of *advanced Li-ion batteries* and PEM fuel cell and regenerative fuel cell systems for the Altair Lunar Lander, Extravehicular Activities (EVA), and rovers and as the primary energy storage system for Lunar Surface Systems. - At JPL, in collaboration with NASA-GRC, NASA-JSC and industry, we are actively developing advanced Li-ion batteries with improved specific energy, energy density and safety. One effort is focused upon developing Li-ion battery electrolyte with enhanced safety characteristics (i.e., low flammability). - ➤ A number of commercial applications also require Li-ion batteries with enhanced safety, especially for automotive applications. ### Exploration Technology Development Program Energy Storage Project #### **Exploration Technology Development Program** Multiple focused projects to develop enabling technologies addressing high priority needs for Lunar exploration. Matures technologies to the level of demonstration in a relevant environment - TRL 6 #### **Energy Storage Project –** Developing electrochemical systems to address Constellation energy storage needs Altair - Lunar Lander - · Primary fuel cells descent stage - Secondary batteries ascent stage #### **EVA** Secondary batteries for the Portable Life Support System (PLSS) **Lunar Surface Systems (LSS)** - Regenerative fuel cell systems for surface systems - Secondary batteries for mobility systems These applications will require high energy density Li-ion batteries with improved safety characteristics. ### **Desired Properties of Lithium-Ion Electrolytes** #### • Electrolyte Selection Criteria - High conductivity over a wide range of temperatures - o 1 mS cm-1 from -60 to 40°C - Wide liquid range (low melting point) - o -60 to 75°C - Good electrochemical stability - Stability over wide voltage window (0 to 4.5V) - o Minimal oxidative degradation of solvents/salts - Good chemical stability - Good compatibility with chosen electrode couple - o Good SEI characteristics on electrode - o Facile lithium intercalation/de-intercalation kinetics - Good thermal stability - Good low temperature performance throughout life of cell - o Good resilience to high temperature exposure - o Minimal impedance build-up with cycling and/or storage - > In addition to meeting these criteria, the electrolyte solutions should be ideally have low flammability and be non-toxic!! ### Flame Retardant Additives in Li-ion Cells for Improved Safety Characteristics - Modification of electrolyte is one of the least invasive and cost effective ways to improve the safety characteristics of Li-ion cells. Common approaches include: - Use of Redox shuttles (to improve safety on overcharge) - Ionic liquids (have inherently low flammability, due to low vapor pressure) - Lithium salt modification - > Flame retardant additives - Use of non-flammable solvents (i.e., halogenated solvents) - ➤ Of these approaches, the use of flame retardant additives has been observed to possess the least impact upon cell performance. ### Previous Work on Flame Retardant Additives in Li-ion Batteries - Most flame retardant additives utilized contain phosphorus - Aromatic and alkyl phosphates most common - Tradeoff exists between flame retarding capabilities and electrochemical stability - Halogenated phosphate compounds - ➤ Tris (2,2,2-trifluoroethyl) phosphate reported to be one of the most promising FRAs examined to date excellent performance characteristics¹ - Other potential FRAs include: - ➤ Phosphites¹- P(III) oxidation state may lead to improve stability and act as Lewis acid scavenger - ➤ Phosphonates³ - Phosphoramides - Phosphazenes⁴ - 1) K. Xu, S. Zhang, J. L. Allen, T. R. Jow J. Electrochem. Soc., 2002, 149, A1079 - 2) (a) S. S. Zhang, K. Xu, and T. R. Jow, *Journal of Power Sources* 113 (1), 166-172 (2003), (b) Nam, T.-H., Shim, E.-G., Kim, J.-G., Kim, H.-S., Moon, S.-I., *Journal of Power Sources* 180 (1), 561-567 (2008). - 3) J. K. Feng, X. P. Ai, Y. L. Cao, and H. X. Yang, J. Power Sources, 177, 194-198 (2008). - T. Tsujikawa, K Yabuta, T. Matsushita, T. Matsushima, K. Hayashi, M. Arakawa, J. Power Sources, 189 (1) 429-434 (2009). ### Development of Electrolytes Containing Flame Retardant Additives $$\begin{array}{c|c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$ Triethyl phosphate (TEP) Tributyl phosphate (TBP) Triphenyl phosphite (TPPi) Bis-(2,2,2trifluoroethyl)methyl phosphonate (BTFEMP) Diethyl phenylphosphonate (DPP) Tris(2,2,2-trifluoroethyl) phosphite (TFPi) Diethyl ethylphosphonate (DEP) $$F_2C$$ O P CF CF_3 Tris(2,2,2-trifluoroethyl) phosphate (TFPa) TPP identified as being the most robust flame retardant additive Electrolytes with the various additives were incorporated into three electrolyte cells with LiNi_xCo_{1-x}O₂ cathodes, MCMB anodes, and Li metal reference electrodes Y. E. Hyung, D. R. Vissers, K. Amine J. Power Sources, 2003, 119-121, 383 K. Xu, M. S. Ding, S. Zhang, J. L. Allen, T. R. Jow J. Electrochem. Soc. 2002, 149, A622 ### Development of Electrolytes Containing Flame Retardant Additives > Electrolytes and approaches investigated in NCA and NCO systems: ``` • 1.0M LiPF₆ EC+EMC+TPP (20:75:5 vol %) Varying Concentration • 1.0M LiPF₆ EC+EMC+TPP (20:70:10 vol %) of TPP • 1.0M LiPF₆ EC+EMC+TPP (20:65:15 vol %) • 1.0M LiPF₆ EC+EMC+DTFEC+TPP (20:50:20:10 vol %) Use of Fluorinated • 1.0M LiPF₆ EC+EMC+DTFEC+TPP (20:30:40:10 vol %) Linear Carbonates • 1.0M LiPF (EC+EMC+TFEMC+TPP (20:50:20:10 vol %) • 1.0M LiPF₆ FEC+EMC+TPP (20:70:10 vol %) Use of Fluorinated • 1.0M LiPF₆ FEC+EMC+TPP (20:65:15 vol %) Ethylene Carbonate • 1.0M LiPF₆ FEC+EMC+TFEMC+TPP (20:50:20:10 vol %) • 1.0M LiPF₆ FEC+EMC+TFEMC+TPP (20:50:20:10 vol %) + 1.5% VC • 1.0M LiPF₆ EC+EMC+TPP (20:75:5 vol %) + 1.5% VC Use of Additives • 1.0M LiPF₆ EC+EMC+TPP (20:65:15 vol %) + 1.5% VC (Vinylene Carbonate) • 1.0M LiPF₆ FEC+EMC+TPP (20:65:15 vol %) + 1.5% VC ``` Where DTFEC = di-2,2,2-trifluoroethyl carbonate TFEMC = 2,2,2-trifluoroethyl methyl carbonate FEC = mono-fluoroethylene carbonate TPP = triphenyl phosphate Flammability tests have been performed on select samples by Prof. Lucht at Univ. Rhode Island ### Formation Characteristics of Three Electrode MCMB-LiNi_xCo_{1-x}O₂ Cells | Electrolyte Type | Charge
Capacity (Ah)
1st Cycle | Discharge
Capacity (Ah)
1st Cycle | Irreverisible
Capacity (1st
Cycle) | Couloumbic
Efficiency
(1st Cyle) | Charge
Capacity (Ah)
5th Cycle | Reversible
Capacity (Ah)
5th Cycle | Cummulative
Irreverisible
Capacity (1st-
5th Cycle) | Couloumbic
Efficiency
(5th Cycle) | |--|--------------------------------------|---|--|--|--------------------------------------|--|--|---| | 1.0 M LiPF ₆ EC+DEC+DMC
(1:1:1 v/v %) | 0.4980 | 0.4160 | 0.082 | 83.52 | 0.4119 | 0.4022 | 0.1264 | 97.64 | | 1.0 M LiPF ₆ EC+EMC
(20:80 v/v %) | 0.4504 | 0.3768 | 0.074 | 83.64 | 0.3799 | 0.3676 | 0.1356 | 96.75 | | 1.0 M LiPF ₆ EC+EMC+TPP
(20:70:10 v/v %) | 0.4705 | 0.3978 | 0.073 | 84.55 | 0.3969 | 0.3819 | 0.1449 | 96.20 | | 1.0 M LiPF ₆
EC+EMC+DTFEC+TPP
(20:50:20:10 v/v %) | 0.4929 | 0.4234 | 0.070 | 85.89 | 0.4248 | 0.4148 | 0.1157 | 97.64 | | 1.0 M LiPF ₆
EC+EMC+DTFEC+TPP
(20:30:40:10 v/v %) | 0.4904 | 0.4124 | 0.078 | 84.09 | 0.4272 | 0.4035 | 0.1958 | 94.45 | | 1.0 M LiPF ₆
FEC+EMC+TFEMC+TPP
(20:50:20:10 v/v %) | 0.4391 | 0.3687 | 0.070 | 83.97 | 0.3698 | 0.3646 | 0.0967 | 98.60 | | 1.0 M LiPF ₆ FEC+EMC+TPP
(20:70:10 v/v %) | 0.4784 | 0.4095 | 0.069 | 85.59 | 0.4127 | 0.4063 | 0.1015 | 98.45 | | 1.0 M LiPF ₆
EC+EMC+TFEMC+TPP
(20:50:20:10 v/v %) | 0.4494 | 0.3753 | 0.074 | 83.51 | 0.3655 | 0.3596 | 0.1192 | 98.40 | | 1.0 M LiPF ₆
FEC+EMC+TFEMC+TPP
(20:50:20:10 v/v %) +1.5% VC | 0.4574 | 0.3868 | 0.071 | 84.55 | 0.3941 | 0.3867 | 0.1036 | 98.13 | When the electrolytes were evaluated in MCMB-LiNiCoO₂ cells, generally good performance was observed with the electrolytes studied. However, some impact upon performance was observed with a high fluorinated carbonate content. This decrease in performance was not as dramatic as when the electrolytes were investigated in Li-Li(Li_{0.17}Ni_{0.25}Mn_{0.58})O₂ cells. ## **Advanced Low Temperature, Non-flammable Electrolytes Summary Discharge Characteristics at Low Temperatures** | Electrol | yte Type | 1.0 M LiPF ₆
EC+DEC+DMC
(1:1:1 v/v %) | | 1.0 M LiPF ₆
FEC+EMC+TFEMC+TPPa
(20:50:20:10 v/v %) | | 1.0 M LiPF ₆
FEC+EMC+TPP
(20:70:10 v/v %) | | 1.0 M LiPF ₆
EC+EMC+TFEMC+TPP
(20:30:40:10 v/v %) | | 1.0 M LiPF ₆
FEC+EMC+TFEMC+TPPa
(20:50:20:10 v/v %)
+ 1.5% VC | | | |----------|-----------------|--|----------------|--|-------------|--|-------------|--|-------------|---|-------------|--| | Temp. | Current
(mA) | Capacity
(Ah) | Percent
(%) | Capacity
(Ah) | Percent (%) | | | 23°C | 25 mA | 0.4022 | 100.00 | 0.3646 | 100.00 | 0.4063 | 100.00 | 0.3596 | 100.00 | 0.3867 | 100.00 | | | 0°C | 25 mA | 0.3633 | 90.31 | 0.3497 | 95.92 | 0.3805 | 93.63 | 0.3410 | 94.81 | 0.3621 | 93.64 | | | | 50 mA | 0.3609 | 89.73 | 0.3409 | 93.48 | 0.3731 | 91.82 | 0.3362 | 93.47 | 0.3591 | 92.88 | | | | 100 mA | 0.3199 | 79.55 | 0.3037 | 83.30 | 0.3374 | 83.04 | 0.2945 | 81.89 | 0.3207 | 82.93 | | | | 150 mA | 0.2950 | 73.35 | 0.2539 | 69.62 | 0.3053 | 75.14 | 0.2298 | 63.89 | 0.2914 | 75.35 | | | - 10°C | 25 mA | 0.3202 | 79.60 | 0.3148 | 86.33 | 0.3544 | 87.23 | 0.3158 | 87.82 | 0.3238 | 83.74 | | | | 50 mA | 0.2974 | 73.95 | 0.2926 | 80.26 | 0.3216 | 79.15 | 0.3013 | 83.79 | 0.3071 | 79.41 | | | | 100 mA | 0.2607 | 64.82 | 0.2026 | 55.57 | 0.2324 | 57.20 | 0.2144 | 59.60 | 0.2593 | 67.07 | | | | 150 mA | 0.2182 | 54.25 | 0.0802 | 22.01 | 0.1793 | 44.14 | 0.1174 | 32.65 | 0.2219 | 57.38 | | | - 20°C | 25 mA | 0.2723 | 67.70 | 0.2982 | 81.79 | 0.3388 | 83.39 | 0.3010 | 83.68 | 0.3127 | 80.88 | | | | 50 mA | 0.2313 | 57.51 | 0.2458 | 67.40 | 0.2876 | 70.79 | 0.2544 | 70.73 | 0.2728 | 70.54 | | | | 100 mA | 0.0661 | 16.43 | 0.0772 | 21.18 | 0.1670 | 41.10 | 0.0778 | 21.62 | 0.1694 | 43.81 | | | | 150 mA | 0.0312 | 7.77 | 0.0287 | 7.88 | 0.0411 | 10.12 | 0.0272 | 7.57 | 0.0493 | 12.76 | | | - 30°C | 25 mA | 0.0288 | 7.16 | 0.2467 | 67.67 | 0.2844 | 69.99 | 0.2654 | 73.79 | 0.2664 | 68.90 | | | | 50 mA | 0.0198 | 4.93 | 0.1069 | 29.31 | 0.1979 | 48.71 | 0.1178 | 32.74 | 0.2050 | 53.03 | | | - 40°C | 25 mA | 0.0203 | 5.06 | 0.0759 | 20.82 | 0.1611 | 39.64 | 0.0511 | 14.21 | 0.1673 | 43.27 | | | - 50°C | 25 mA | 0.0059 | 1.46 | 0.0000 | 0.01 | 0.0377 | 9.27 | 0.0135 | 3.75 | 0.0234 | 6.04 | | Some formulations investigated have up to 40% of a partially fluorinated solvent and 10% flame retardant additive ### Discharge Characteristics of Three Electrode MCMB-LiNi_xCo_{1-x}O₂ Cells When the electrolytes were evaluated in MCMB-LiNiCoO₂ cells, generally good performance was observed with the electrolytes studied. Good performance was even observed when the EC was replaced completely with FEC and TFEMC was added as well at a ~ **C/4 rate at 0°C**. For details regarding the URI/Yardney electrolyte see: S. Dalavi, M. Xu, B. Ravdel, L. Zhou, and B. L. Lucht, *J. Electrochem. Soc.*, **157**, A1113 (2010). ### Tafel Characteristics of Three Electrode MCMB-LiNi_xCo_{1-x}O₂ Cells - Performance of Yardney/URI electrolyte compared with baseline solution. - Although lithium kinetics are observed to be facile at the cathode with the cell containing the Yardney/URI electrolyte, the lithium kinetics at the anode are dramatically lower compared with the baseline system. ### Formation Characteristics of Three Electrode Graphite-LiNi_xCo_{1-x}AlO₂ Cells #### Saft Baseline Electrodes | Cell
Number | Electrolyte Type | Charge
Capacity (Ah)
1st Cycle | Discharge
Capacity (Ah)
1st Cycle | Irreverisible
Capacity (1st
Cycle) | Couloumbic
Efficiency
(1st Cyle) | Charge
Capacity (Ah)
5th Cycle | Reversible
Capacity (Ah)
5th Cycle | Cummulative
Irreverisible
Capacity (1st-
5th Cycle) | Couloumbic
Efficiency
(5th Cycle) | Cathode Weight
(g) (Including
Substrate and
Inactive Material) | Anode Weight (g)
(Including
Substrate and
Inactive Material) | |----------------|--|--------------------------------------|---|--|--|--------------------------------------|--|--|---|---|---| | Cell
ST07 | 0.95 M LiPF ₆ + 0.05M LiBOB
in EC+DMC+DMMP
(30:55:15 v/v %) | 0.4608 | 0.3084 | 0.152 | 66.92 | 0.2842 | 0.2036 | 0.4300 | 71.62 | 3.068 | 2.454 | | Cell
ST08 | 1.0 M LiPF ₆ EC+DMC+MB
(1:1:3 v/v %) + 1.5% VC | 0.4737 | 0.4124 | 0.061 | 87.06 | 0.3713 | 0.3620 | 0.0986 | 97.49 | 3.066 | 2.453 | | Cell
ST09 | 1.0 M LiPF ₆ EC+EMC+TPP
(20:65:15 v/v %) + 1.5% VC | 0.4409 | 0.3715 | 0.069 | 84.26 | 0.3779 | 0.3673 | 0.1191 | 97.20 | 3.055 | 2.451 | | Cell
ST10 | 1.0 M LiPF ₆ EC+DEC+DMC
(1:1:1 v/v %) | 0.4306 | 0.3600 | 0.071 | 83.59 | 0.3609 | 0.3526 | 0.1048 | 97.71 | 2.944 | 2.445 | | Cell
ST11 | 0.95 M LiPF ₆ + 0.05M LiBOB
in EC+DMC+DMMP
(30:55:15 v/v %)
[Final Delivery 12-2009] | 0.4336 | 0.2684 | 0.165 | 61.91 | 0.2193 | 0.2025 | 0.2665 | 92.34 | 3.000 | 2.448 | | Cell
ST12 | 1.0 M LiPF ₆ FEC+EMC+TPP
(20:65:15 v/v %) + 1.5% VC | 0.4376 | 0.3689 | 0.069 | 84.31 | 0.3675 | 0.3688 | 0.0689 | 100.34 | 2.934 | 2.434 | Formation Characteristics of Three Electrode Graphite-LiNi_xCo_{1-x}AlO₂ Cells Saft Baseline Electrodes ## Formation Characteristics of Three Electrode Graphite-LiNi_xCo_{1-x}AlO₂ Cells Saft Baseline Electrodes | | | | ST | 13 | ST | 14 | ST | 15 | ST | Г16 | ST | 17 | |--------|------------------|-------|--|-------------|--|-------------|---|-------------|--|--------|---|-------------| | Elec | Electrolyte Type | | 1.00M LiPF ₆ EC+EMC+TPP
(20:70:10 vol %) | | 1.00M LiPF ₆ EC+EMC+TPP
(20:65:15 vol %) | | 1.00M LiPF ₆ FEC+EMC+TPP
(20:70:10 vol %) | | 1.0M LiPF ₆ + 0.15M LiBOB
EC+EMC+TPP
(20:70:10 vol %) | | 1.0 M LiPF6 FEC+EMC+TPF
(20:65:15 vol %) | | | Temp. | Current
(mA) | Rate | Capacity
(Ah) | Percent (%) | Capacity
(Ah) | Percent (%) | Capacity
(Ah) | Percent (%) | Capacity
(Ah) | | | Percent (%) | | 23°C | 7.50 mA | C/65 | 0.5134 | 100.00 | 0.4991 | 100.00 | 0.5302 | 100.00 | 0.5253 | 100.00 | 0.5415 | 100.00 | | | 25 mA | C/20 | 0.4888 | 95.19 | 0.4783 | 95.83 | 0.4922 | 92.83 | 0.5104 | 97.18 | 0.5203 | 96.08 | | | 50 mA | C/10 | 0.4589 | 89.37 | 0.4440 | 88.95 | 0.4537 | 85.57 | 0.4881 | 92.93 | 0.4498 | 83.07 | | | 100 mA | C/5 | 0.4046 | 78.81 | 0.3722 | 74.58 | 0.3881 | 73.20 | 0.4300 | 81.86 | 0.2867 | 52.95 | | | 150 mA | C/3.3 | 0.3805 | 74.12 | 0.3203 | 64.18 | 0.3643 | 68.70 | 0.4015 | 76.44 | 0.2273 | 41.98 | | 0°C | 25 mA | C/20 | 0.4060 | 79.08 | 0.3877 | 77.68 | 0.3944 | 74.37 | 0.4308 | 82.02 | 0.3512 | 64.85 | | | 50 mA | C/10 | 0.4213 | 82.06 | 0.3800 | 76.14 | 0.4123 | 77.76 | 0.4430 | 84.34 | 0.4024 | 74.31 | | | 100 mA | C/5 | 0.3647 | 71.04 | 0.2428 | 48.65 | 0.3563 | 67.20 | 0.3926 | 74.74 | 0.2101 | 38.79 | | | 150 mA | C/3.3 | 0.2897 | 56.41 | 0.1132 | 22.69 | 0.3201 | 60.38 | 0.3414 | 65.00 | 0.0823 | 15.20 | | - 20°C | 25 mA | C/20 | 0.3499 | 68.15 | 0.2838 | 56.87 | 0.3294 | 62.13 | 0.3362 | 64.01 | 0.2291 | 42.31 | | | 50 mA | C/10 | c/10 0.2750 53.57 | | 0.0975 | 2.00 | 0.2844 | 53.64 | 0.2631 | 50.10 | 0.0752 | 13.88 | | | 100 mA | C/5 | 0.1027 | 19.99 | 0.0338 | 6.76 | 0.1365 | 25.74 | 0.1233 | 23.48 | 0.0207 | 3.83 | | | 150 mA | C/3.3 | 0.0551 | 10.73 | 0.0217 | 4.34 | 0.0474 | 8.94 | 0.0687 | 13.08 | 0.0133 | 2.46 | Formation Characteristics of Three Electrode Graphite-LiNi_xCo_{1-x}AlO₂ Cells Saft Baseline Electrodes Comparison of Electrolyte Types = 50mA at 0°C Electrolyte = 1.0M LiPF₆ EC+EMC+TPP (20:75:5 v/v %) Good performance is observed with the electrolyte containing the triphenyl phosphate FRA. Five formation cycles were performed on the cell, which displayed good reversibility. Li-Li(Li_{0.17}Ni_{0.25}Mn_{0.58})O₂ cells = Rate Capability at Low Temperature | | | 0.95 M LiPF ₆ + 0.05M LiBOB
EC+EMC+DMMP (30:55:15 v/v %) | | | | | | 1.0 M LiPF ₆ EC+DEC+ DMC (1:1:1 v/v %) | | | | | | |-----------|-------------------|--|--------|----------------------------------|----------|--------|----------------------------------|---|--------|----------------------------------|----------|--------|----------------------------------| | | | Cell JZ41 | | | JZ42 | | | Cell JZ35 | | | JZ36 | | | | Temp (°C) | Discharge
Rate | Ah | mAh/g | % of C/20
Capacity
(mAh/g) | | 23°C | C/20 | 0.003109 | 233.76 | 100 | 0.003011 | 231.62 | 100 | 0.002721 | 226.77 | 100 | 0.002709 | 227.28 | 100 | | | C/10 | 0.002999 | 225.47 | 96.46 | 0.002942 | 226.32 | 97.71 | 0.002636 | 219.64 | 96.86 | 0.002626 | 220.34 | 96.94 | | | C/5 | 0.002816 | 211.71 | 90.57 | 0.002813 | 216.36 | 93.41 | 0.00251 | 209.18 | 92.25 | 0.0025 | 209.72 | 92.27 | | | C/2 | 0.002468 | 185.57 | 79.39 | 0.002496 | 192.02 | 82.91 | 0.002283 | 190.28 | 83.91 | 0.002122 | 178.00 | 78.32 | | 0°C | C/20 | 0.002484 | 186.75 | 79.89 | 0.002425 | 186.57 | 80.55 | 0.002147 | 178.92 | 78.90 | 0.002102 | 176.34 | 77.59 | | | C/10 | 0.002278 | 171.31 | 73.28 | 0.002258 | 173.68 | 74.99 | 0.002051 | 170.94 | 75.38 | 0.001993 | 167.17 | 73.55 | | | C/5 | 0.001957 | 147.17 | 62.96 | 0.001981 | 152.36 | 65.78 | 0.001881 | 156.73 | 69.11 | 0.001678 | 140.80 | 61.95 | | | C/2 | 0.001558 | 117.14 | 50.11 | 0.001587 | 122.04 | 52.69 | 0.001416 | 118.04 | 52.05 | 0.000877 | 73.55 | 32.36 | | -10°C | C/20 | 0.002077 | 156.17 | 66.81 | 0.002034 | 156.48 | 67.56 | 0.001947 | 162.25 | 71.55 | 0.001876 | 157.41 | 69.26 | | | C/10 | 0.001925 | 144.74 | 61.92 | 0.001919 | 147.59 | 63.72 | 0.001744 | 145.30 | 64.08 | 0.001651 | 138.51 | 60.94 | | | C/5 | 0.001526 | 114.70 | 49.07 | 0.001538 | 118.27 | 51.06 | 0.00141 | 117.47 | 51.80 | 0.001065 | 89.31 | 39.29 | | | C/2 | 0.001052 | 79.12 | 33.85 | 0.001059 | 81.46 | 35.17 | 0.000658 | 54.84 | 24.18 | 0.000651 | 54.59 | 24.02 | When the electrolytes were investigated in Li-Li(Li_{0.17}Ni_{0.25}Mn_{0.58})O₂ cells, comparable performance was observed with Yardney formulation compared with the baseline electrolyte (in terms of mAh/g). However, different trends may be observed when coupled with carbon anodes, rather than with lithium metal (i.e., due to the reactivity of LiBOB and/or DMMP). $Li-Li(Li_{0.17}Ni_{0.25}Mn_{0.58})O_2$ cells = Rate Capability at Low Temperature | | 1.0 M LiPF ₆ FEC+EC+EMC+TPP
(20:20:45:15 v/v %) | | | | | | | | 1.0 M LiPF ₆ EC+EMC+TPP
(20:65:15 v/v %) | | | | | | |-----------|---|----------|----------|----------------------------------|----------|--------|----------------------------------|-----------|--|----------------------------------|----------|--------|----------------------------------|--| | | | c | Cell JZ4 | 5 | | JZ46 | | Cell JZ47 | | | JZ48 | | | | | Temp (°C) | Discharge
Rate | Ah | mAh/g | % of C/20
Capacity
(mAh/g) | | | 23°C | C/20 | 0.002549 | 205.56 | 100 | 0.002533 | 205.96 | 100 | 0.002528 | 210.65 | 100 | 0.002869 | 227.71 | 100 | | | | C/10 | 0.002432 | 196.15 | 95.42 | 0.002437 | 198.14 | 96.20 | 0.002449 | 204.08 | 96.88 | 0.00252 | 199.98 | 87.82 | | | | C/5 | 0.002228 | 179.65 | 87.39 | 0.002226 | 180.97 | 87.87 | 0.002328 | 194.01 | 92.10 | 0.002384 | 189.21 | 83.09 | | | | C/2 | 0.001307 | 105.38 | 51.26 | 0.001463 | 118.98 | 57.77 | 0.001996 | 166.33 | 78.96 | 0.002064 | 163.79 | 71.93 | | | 0°C | C/20 | 0.001774 | 143.05 | 69.59 | 0.001771 | 143.97 | 69.90 | 0.001833 | 152.75 | 72.51 | 0.001827 | 144.96 | 63.66 | | | | C/10 | 0.001459 | 117.63 | 57.22 | 0.00145 | 117.89 | 57.24 | 0.001614 | 134.50 | 63.85 | 0.001565 | 124.21 | 54.55 | | | | C/5 | 0.000815 | 65.74 | 31.98 | 0.000812 | 66.00 | 32.05 | 0.001042 | 86.82 | 41.21 | 0.000952 | 75.59 | 33.20 | | | | C/2 | 0.000287 | 23.13 | 11.25 | 0.000304 | 24.75 | 12.02 | 0.000395 | 32.88 | 15.61 | 0.000352 | 27.96 | 12.28 | | | -10°C | C/20 | 0.000991 | 79.90 | 38.87 | 0.000954 | 77.60 | 37.68 | 0.001214 | 101.20 | 48.04 | 0.001108 | 87.90 | 38.60 | | | | C/10 | 0.000727 | 58.59 | 28.50 | 0.000739 | 60.09 | 29.17 | 0.000942 | 78.46 | 37.25 | 0.000373 | 29.57 | 12.98 | | | | C/5 | 0.000302 | 24.36 | 11.85 | 0.00031 | 25.18 | 12.23 | 0.00039 | 32.49 | 15.42 | 0.000329 | 26.11 | 11.47 | | | | C/2 | 0.000134 | 10.82 | 5.27 | 0.000137 | 11.13 | 5.40 | 0.000158 | 13.17 | 6.25 | 0.000156 | 12.35 | 5.43 | | | -20°C | C/20 | 0.000356 | 28.73 | 13.98 | 0.001138 | 92.55 | 44.94 | 0.000467 | 38.94 | 18.48 | 0.000425 | 33.74 | 14.82 | | When the electrolytes were investigated in Li-Li(Li_{0.17}Ni_{0.25}Mn_{0.58})O₂ cells, reduced rate capability was observed with 20% EC+20% FEC+15%TPP. Li-Li(Li_{0.17}Ni_{0.25}Mn_{0.58})O₂ cells = Rate Capability at Low Temperature The URI/Yardney electrolyte performs very well with the NEI-D cathode, but much poorer when evaluated with carbon electrodes. ➤ High TPP content (with and without FEC and/or VC) appears to perform well in cells with carbonaceous anodes, but some performance decline observed when coupled with high voltage cathode (i.e., in Li/NEI-D cells). However, when these electrolytes were evaluated in the MPG-111/Toda cathode system, the performance was very poor necessitating further development. This lead to further modifications to the electrolytes!! ### Results from Second Batch of Electrolytes Evaluated in the MPG-111-Toda System ### **Comparison of Electrolyte Types (After Formation)** - Comparable performance was obtained with the JPL Gen #2 electrolytes (containing LiBOB) compared with the baseline solution. - There is no observed capacity (or voltage) benefit observed with charging to 4.80V ### Results of Electrolytes Evaluated in the MPG-111-Toda System **Comparison of Electrolyte Types (After Formation)** On-going work to identify further improvements (i.e., increasing TPP content and varying LiBOB concentrations) - A number of electrolytes displayed comparable performance with the the baseline solution, including the JPL Gen #2 electrolyte as well as newer iterations with increased TPP content (15%) and an FEC-containing blend. - Cell cycled over the voltage range of 3.00 to 4.60V. # Formation Characteristics of MPG-111-Toda Experimental Cells Discharge Capacity - Nearly identical reversible capacity was obtained with both electrolyte types. - The discharge voltage profiles are very similar also. ### Cell TM01 Baseline Electrolyte | Cycle # | Charge (Ah) | Discharge
Capacity (Ah) | Irreversible
Capacity
(Ah) | Efficiency
(%) | Reversible
Capacity
(mAh/g) | Irreversible
Capacity
(mAh/g) | |---------|-------------|----------------------------|----------------------------------|-------------------|-----------------------------------|-------------------------------------| | 1 | 0.28674 | 0.20135 | 0.085 | 70.22 | 162.38 | 68.86 | | 2 | 0.25745 | 0.23368 | 0.024 | 90.77 | 188.45 | 19.17 | | 3 | 0.25257 | 0.24971 | 0.003 | 98.86 | 201.38 | 2.31 | Cumulative Irreversible Capcity Loss = 0.1120 Ah Cumulative Irreversible Capcity Loss = 90.34 mAh/g ### Cell TM02 JPL Generation II Electrolyte | | 010 | Jener a | 11011 - | | | | |---------|-------------|----------------------------|----------------------------------|----------------|-----------------------------------|-------------------------------------| | Cycle # | Charge (Ah) | Discharge
Capacity (Ah) | Irreversible
Capacity
(Ah) | Efficiency (%) | Reversible
Capacity
(mAh/g) | Irreversible
Capacity
(mAh/g) | | 1 | 0.24729 | 0.17637 | 0.071 | 71.32 | 142.35 | 57.19 | | 2 | 0.26617 | 0.22849 | 0.038 | 85.84 | 184.41 | 30.39 | | 3 | 0.25655 | 0.24780 | 0.009 | 96.59 | 200.00 | 7.06 | Cumulative Irreversible Capcity Loss = 0.11735 Ah Cumulative Irreversible Capcity Loss = 94.64 mAh/g ### Performance Testing of Aerospace Quality Prototype Li-Ion Cells Performance of Advanced Electrolytes in 7Ah Cells - Obtained a 7 Ah cells (NCP 7) fabricated by Yardney Technical Products containing JPL developed electrolytes: - 1.0 M LiPF₆ EC+EMC+TPP+VC (20:74:5:1.5 v/v %) (TPP = triphenyl phosphate) - 1.0 M LiPF₆ EC+EMC+TFEB (20:60:20 v/v %) (TFEB=2,2,2-trifluoroethyl butyrate) - 1.0 M LiPF₆ EC+EMC (20:80 v/v %) - 1.0 M LiPF₆ EC+DEC+DMC+EMC (1:1:1:3 v/v %) - 1.0 M LiPF₆ EC+DEC+DMC (1:1:1 v/%) (Baseline 2003 MER Rover Electrolyte) ### Test Plan - Performed a number of performance evaluation tests - •Conditioning cycling performed at 20°, 0°, and -20°C (with impedance) - Discharge Rate Characterization at Various Temperatures - Wide temperature range (-80 to 20°C) - Wide range of discharge rates (C rate to C/400 rate) - Comparison of electrolyte types - •Pulse Discharge Characterization at Various Temperatures - •Current-Interrupt Impedance Measurements ### **Yardney 7 Ah Prismatic Li-Ion Cells** ### **Characterization of Cells Containing Electrolytes With FRAs** #### Discharge Performance at 20°C ### Triphenyl phosphate (TPP) Cells containing an electrolyte with a flame retardant additive (i.e., 1.0 M LiPF₆ in EC+EMC+TPP+VC) are observed to display good performance over a range of temperatures. # Characterization of Cells Containing Advanced Electrolytes Summary of Discharge Characterization Testing at Various Temperatures Discharge Performance at - 10°C Discharge Capacity (Ah) at - 10°C #### 5.0 Lithion/Yardney 7 AHr Li-Ion Cell 4.5 MCMB Carbon-LiNiCoO₂ 1.0M LiPF₆ EC+EMC+TPP+VC (19.7:73.9:4.9:1.5 v/v %) 4.0 Cell LW473 3.5 Cell Voltage (V) 3.0 2.5 2.0 Capacity at - 10C (C Discharge Rate) 1.5 Capacity at - 10C (C/2 Discharge Rate) Temperature = $-10^{\circ}C$ Capacity at - 10C (C/5 Discharge Rate) 1.0 △ Capacity at - 10C (C/10 Discharge Rate) 1.400 Amp Charge current (C/5) to 4.1 V Capacity at - 10C (C/20 Discharge Rate) Taper Cut-Off at 0.025 A (~ C/280) 0.5 Cell charged at RT prior to LT discharge . Capacity at - 10C (C/50 Discharge Rate) 0.0 0 2 6 Discharge Capacity (Ah) #### Discharge Energy (Wh/Kg) at - 10°C Cells containing an electrolyte with a flame retardant additive (i.e., 1.0 M LiPF₆ in EC+EMC+TPP+VC) are observed to display good performance over a range of temperatures. # Characterization of Cells Containing Advanced Electrolytes Summary of Discharge Characterization Testing at Various Temperatures Discharge Performance at - 40°C Discharge Capacity (Ah) at - 40°C Discharge Energy (Wh/Kg) at - 40°C Cells containing an electrolyte with a flame retardant additive (i.e., 1.0 M LiPF₆ in EC+EMC+TPP+VC) are observed to display good performance over a range of temperatures. ### **Yardney 7 Ah Prismatic Li-Ion Cells** ### Characterization of Cells Containing Advanced Electrolytes Charge Characteristics at 10°C #### **Charge Capacity (Ah)** | Charge Rate | Charge
Current (A) | Charge
Capacity (Ah) | Charge
Time
(Hours) | Percent C/10
Capacity | Percent C/10
Capacity at
20°C | |-------------|-----------------------|-------------------------|---------------------------|--------------------------|-------------------------------------| | C/20 | 0.350 | 6.6347 | 19.2328 | 100.00 | 94.42 | | C/10 | 0.700 | 6.6185 | 9.9440 | 99.76 | 94.19 | | C/5 | 1.400 | 6.6230 | 5.4156 | 99.82 | 94.25 | | C/2 | 3.500 | 6.6205 | 2.7775 | 99.79 | 94.21 | | 0.75 C | 5.250 | 6.6541 | 2.2816 | 100.29 | 94.69 | | 1.00 C | 7.000 | 6.6553 | 2.0344 | 100.31 | 94.71 | Cells were subjected to C/20, C/10, C/5, C/2 and C charge rates. Charge rate characterization will be performed at various temperatures. ### Yardney 7 Ah Prismatic Li-Ion Cells ### Characterization of Cells Containing Advanced Electrolytes 100 % DOD Cycle Life Testing at Room Temperature Percentage of Initial Capacity (%) Cells containing an electrolyte with a flame retardant additive (i.e., 1.0 M LiPF₆ in EC+EMC+TPP+VC) are observed to display good cycle life compared to the baseline formulation. ### Discharge Characteristics MCMB / LiNiCoO₂ 7 Ah Cells Conditioning at 20°C #### **Comparison of Electrolyte Types** - We are currently evaluating a number of cells which possess electrolytes with - (a) higher TPP content (up to 15%), - (b) the use of FEC in lieu of EC, and - (c) the addition of 2,2,2-trifluoroethyl methyl carbonate (TFEMC). Initial results are very promising, suggesting good compatibility with the system. ### SUMMARY and CONCLUSIONS - Performance in three electrode MCMB-LiNiCoO₂ Cells and Graphite-LiNiCoAlO₂ Cells - Many electrolytes containing flame retardant additives were observed to perform well in experimental MCMB-LiNi $_{x}$ Co $_{1-x}$ O $_{2}$ cells. - Using electrochemical characterization techniques, the anode kinetics were more dramatically affected by the presence of FRAs compared to the cathode. - Various approaches have been taken to improve the compatibility within the systems, including using VC, FEC, LiBOB and fluorinated carbonates. - Performance in Li-Li(Li_{0.17}Ni_{0.25}Mn_{0.58})O₂ Coin Cells - Good performance was observed with triphenyl phosphate-containing electrolytes, however, triphenyl phosphite-based electrolytes displayed much poorer behavior. - An electrolyte consisting of 1.0M in EC+EMC+TPP (20:75:5) was shown to have the best performance or the FRA-containing electrolytes investigated. - Performance in Graphite-Toda LiNiCoMnO₂ Coin Cells - Many electrolyte identified as promising based on conclusions made from lithium metal anode cells performed very poorly. - This neccessited the development of further improved electrolyte aimed at improving the compatibility of the TPP-based systems (i.e., incorporation of LiBOB). - Performance in large capacity prototype MCMB-LiNiCoO₂ Cells - A number of electrolytes were demonstrated to have good discharge characteristics over a wide temperature range, good charge characteristics, and good life characteristics. ## Acknowledgments The work described here was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA).